DALTON FULL PAPER

Synthesis and reactions of ene-hydrazone diphosphine iridium complexes and related species †

Sarath D. Perera and Bernard L. Shaw*

School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

Treatment of the azine diphosphine Z,Z-PPh,CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh, I with [IrCl(CO)₂(H₂NC₆H₄Me-4)] in benzene gave the ene-hydrazone diphosphine iridium(III) hydride [IrH(Cl)(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)-CH₂PPh₂}], 1, which isomerised reversibly to the ionic square planar iridium(I) complex [Ir(CO){PPh₂CH₂C-(But)=N-N=C(But)CH₂PPh₂}]Cl 2a, containing an azine diphosphine. Treatment of 1 with NEt, gave the neutral ene-hydrazone diphosphine iridium(I) complex [Ir(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₃}] 3 which is reactive and undergoes oxidative addition of H₂ to give the iridium(III) dihydride mer,cis-[IrH₂(CO){PPh₂CH= C(But)N-N=C(But)CH₂PPh₂}] 4 and oxidative addition of MeI to give the methyliridium(III) complex [IrMe(I)-(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}] 5. It reacted rapidly with olefins or acetylenes (L), i.e. N-methylmaleimide, ethene or dimethyl acetylenedicarboxylate, to give the five-co-ordinate adducts [Ir(CO)L{PPh2CH= $C(Bu^t)N-N=C(Bu^t)CH_2PPh_2$], 6a, 6b or 6c, respectively, also with O_2 to give the η^2 -dioxygen adduct [Ir(CO)- (η^2-O_2) {PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}] 7. Treatment of 3 with 1 mol of picric acid protonated the enehydrazone diphosphine backbone to give the azine diphosphine iridium(i) salt [Ir(CO){PPh₂CH₂C(Bu^t)=N-N= C(But)CH₂PPh₂}][OC₆H₂(NO₂)₃] **2b**. The N-methylmaleimide adduct **6a** was similarly protonated to give the $corresponding \ azine \ diphosphine \ iridium(i) \ salt \ [Ir(CO)(\eta^2-COCH=CHCONMe)\{PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)-N-N=C(Bu^t)$ CH₃PPh₃[[OC₆H₂(NO₂)₃] 8. Complex 1 was protonated by HCl to give the corresponding azine diphosphine iridium(III) salt [IrH(Cl)(CO){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂}]Cl 9a, which is converted into 3 when treated with NEt₃. The ¹H, ¹³C and ³¹P NMR and some IR data are given.

Azines, R₂C=N-N=CR₂, formed by condensing hydrazine with a ketone (or aldehyde) are often very stable entities and we have used azine backbones to generate new kinds of tertiary phosphine-metal chemistry very successfully. We have described, for example, the azine diphosphine PPh₂CH₂-C(But)=N-N=C(But)CH₂PPh₂, prepared by lithiation of tertbutyl methyl ketazine, followed by treatment with Ph₂PCl.¹ This diphosphine is in a Z,Z configuration and commonly bridges metals. Using it as a bridging ligand, we have made binuclear palladium(II) complexes with 18 atom rings or a polynuclear complex with platinum(II), probably hexanuclear, with a 54 atom ring.^{2,3} However, it can form a nine-membered chelate ring with gold(I).4 The energy barrier to rotation around a C=N bond is low and PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂ frequently reacts in the E,Z configuration with metals. Again a nine-membered chelate ring can form, e.g. with Cr, Mo or W1 or Pt.^{2,3} More commonly, E,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)-CH₂PPh₂ acts as a terdentate P,N,P bonded ligand with fiveand six-membered fused chelate rings as with Cr, Mo or W,1 Pd^{II}, Pt^{II} or Pt^{IV 2,3} or Ir^{I, 5,6} We have also shown that in some metal complexes containing the terdentate E,Z-diphosphine ligand PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂ reversible deprotonation of a CH2 group adjacent to co-ordinated PPh2 can occur giving a terdentate ene-hydrazone diphosphine ligand, PPh₂CH=C(Bu^t)-N-N=C(Bu^t)CH₂PPh₂; this has been developed into a new method of generating co-ordinative unsaturation.5,6

In the present paper we describe a new, highly reactive neutral iridium(I) complex containing this ene-hydrazone ligand together with its reactions. For the convenience of the reader the various reactions are shown in Schemes 1–3 and the characterising NMR data for the various complexes are given in Tables 1–3.

Results and Discussion

Previously⁶ we have reported that treatment of [IrCl(CO)₂- $(H_2NC_6H_4Me-4)]^7$ with $Z_1Z_2-PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)-$ CH₂PPh₂ I, in benzene, gives the octahedral iridium(III) hydride 1 containing the ene-hydrazone diphosphine ligand. However, when 1 is dissolved in a polar solvent such as ethanol or methanol it very rapidly isomerises to the square planar iridium(I) salt 2a containing the terdentate diphosphine ligand E,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂. Hydrogen migration from the azine backbone is rapid and, on dissolution of 2a in benzene or dichloromethane, isomerisation back to 1 occurs rapidly and essentially completely. We now find that when the neutral octahedral iridium(III) hydride 1 is treated with triethylamine, 1 molecule of HCl is removed and the orange square planar neutral iridium(I) complex 3 is formed in good (>70%) yield. Complex 3 contains a terdentate ene-hydrazone diphosphine ligand. This iridium(I) carbonyl complex shows v(C≡O) at 1945 cm⁻¹ in dichloromethane solution (see Experimental section for IR and elemental analytical data). The ³¹P-{¹H} NMR spectrum shows an AX pattern with strongly coupled trans-phosphorus atoms $[^2J(PP) = 299 \text{ Hz}]$. The 1H and 1H -{31P} NMR data are in complete accord with the assigned structure, in particular, the olefinic proton of the enehydrazone system gave a doublet of doublets at δ 5.04 [J(PH) = 3.9, 3.2 Hz]. In the ${}^{13}\text{C} - \{{}^{1}\text{H}\}$ NMR spectrum the resonances of all four carbons of the ene-hydrazone backbone and of the C≡O carbon and also of the two tert-butyl groups are assigned (see Table 3). The methylene carbon gave a doublet at δ 20.0 [${}^{1}J(PC) = 23.4$ Hz]; this chemical shift is typical of methylene carbon in a six-membered chelate ring. 2,3,8,

On maintaining a C_6D_6 solution of the iridium(I) complex 3 under 1 atm (101 325 Pa) of dihydrogen the orange solution gradually became paler and a new species was formed over 20 h, as shown by ${}^{31}P-{}^{1}H$, ${}^{1}H$ and ${}^{1}H-{}^{31}P$ } NMR studies. We formulate this new species as the iridium(III) dihydride 4 (Scheme 2). This dihydride was labile and we were unable to isolate it; the

 $[\]dagger$ Dedicated to Professor Warren Roper on the occasion of his 60th birthday.

assigned structure **4** is based on the NMR evidence. The ${}^{3}P$ - ${}^{1}H$ } NMR spectrum showed that the two phosphorus were mutually *trans* with ${}^{2}J(PP) = 301$ Hz (Table 1). The ${}^{1}H$ and ${}^{1}H$ - ${}^{31}P$ } NMR spectra (data in Table 2) show two hydrides mutually cis, ${}^{2}J(HH) = 4.2$ Hz. The hydride resonating at $\delta - 15.78$ is

$$Ph_{2}P \longrightarrow Bu^{t}$$

$$I$$

$$(i)$$

$$Ph_{2}H$$

$$Ph_{3}H$$

$$Ph_{4}H$$

$$Ph_{4}H$$

$$Ph_{4}H$$

$$Ph_{4}H$$

$$Ph_{5}H$$

$$Ph_{5$$

Scheme 1 (i) [IrCl(CO)₂(H₂NC₆H₄Me-4)]; (ii) EtOH or MeOH; (iii) CH₂Cl₂ or C₆H₆; (iv) HCl; (v) NH₄PF₆; (iv) NEt₃

probably *trans* to nitrogen and other iridium hydrides with hydride *trans* to a nitrogen donor ligand typically resonate at *ca*. $\delta - 16.^6$ The other hydride resonance at $\delta - 8.62$ is assigned to the hydride *trans* to C=O; other iridium hydrides with H *trans* to C=O resonate at δ *ca*. $-8.^{10-13}$ The small coupling constants to phosphorus of 10.0 and 14.3 ($\delta - 15.78$) and 9.4 Hz ($\delta - 8.62$) show that both hydrides are *cis* to both phosphorus atoms.

The iridium(I) complex 3 reacts with methyl iodide over 3 h to give a methyliridium(III) complex formulated as 5. The elemental analysis (Experimental section) and value of $v(C\equiv O)$ 2015 cm⁻¹ are in agreement with the assigned structure. The ³¹P-{¹H} NMR spectrum showed that the *mer* geometry of the terdentate phosphine was retained with ²J(PP) = 353 Hz. In the ¹H NMR spectrum the IrCH₃ gave a triplet at δ 0.14 with ³J(PH) = 5.3 Hz and in the ¹³C-{¹H} NMR spectrum the CH₃ carbon gave a triplet at δ -8.6, ²J(PC) = 3.5 Hz. These triplets might be deceptively simple and arise because of a second order phenomenon, since the phosphorus atoms are very strongly coupled, although non-equivalent. The other proton and carbon-13 data are consistent with the assigned structure 5.

The iridium(I) complex 3 reacted rapidly with olefins (*N*-methylmaleimide or ethene), or with the acetylene MeO₂-CC≡CCO₂Me, to give adducts (Scheme 2). We formulate these as **6a**, **6b**, and **6c**, respectively. *N*-Methylmaleimide when added to an orange solution of 3 in dichloromethane reacted over 15 min (³¹P-{¹H} NMR evidence) and the yellow *N*-methylmaleimide adduct **6a** was isolated in 86% yield. It was characterised by elemental analysis and the IR spectrum. The ³¹P-

Table 1 ³¹P-{¹H} NMR data^a

Compound	$\delta(P_A)$	$\delta(P_{B})$	$^2J(PP)/Hz$
\mathbf{I}^{b}	-14.4		
1 ^b	44.3	20.3	312
2a b	60.6	56.0	303
$2b^{c,d}$	60.8	55.5	306
3 e	60.3	34.1	299
4 e	46.6	13.8	301
5^d	37.3	17.0	353
6a c,d	12.0	9.3	22
$\mathbf{6b}^{d,f}$	43.4	15.8	49
6c d	8.5	3.3	25
7 e	14.6	1.1	396
8 ^d	35.8	9.3	32
9a ^c	40.7	25.4	318
9b ^c	41.9	25.6	317

^a Recorded at 36.2 MHz, chemical shifts (δ) in ppm relative to 85% H_3PO_4 , solvent CD_2Cl_2 unless otherwise stated. ^b From ref. 6. ^c In $CDCl_3$. ^d At 101.2 MHz. ^e In C_6D_6 . ^f Recorded at -80 °C, but at 20 °C, $\delta(P_A)$ 55.1, $\delta(P_B)$ 26.3 and ²J(PP) = 210 Hz.

$$\begin{bmatrix} Ph_2 & Ph_2 & Ph_2 & Bu^t & Ph_2 & Bu^t & Ph_2 & Bu^t & Ph_2 & Bu^t & Ph_2 & Ph_2$$

Scheme 2 (i) HOC₆H₂(NO₂)₃-2,4,6; (ii) H₂; (iii) MeI; (iv) for complex 6a, N-methylmaleimide; for 6b, ethene; for 6c, MeO₂CC≡CCO₂Me; (v) O₂

Table 2 Proton NMR data

Compound	$\delta(Bu^t)$	$\delta(CH_2P)$	Others
\mathbf{I}^{b}	0.90 (18 H, s)	$3.26 [4 \text{ H}, d, {}^{2}J(\text{PH}) 3.9]$	
1 ^b	0.77 (9 H, s)	$3.03 [1 \text{ H, m,}^2 J(\text{HH}) 11.7]$	-15.40 [1 H, dd, ${}^{2}J(PH)$ 11.4, 10.6, IrH]
•	1.66 (9 H, s)	3.99 [1 H, dd, ² <i>J</i> (HH) 11.7, ² <i>J</i> (PH) 12.5]	4.80 [1 H, t, ${}^{2}J(PH) = {}^{4}J(PH)$ 4.9, PCH=]
$2\mathbf{b}^{c,d}$	0.83 (9 H, s)	3.63 [2 H, dd, ² <i>J</i> (PH) 11.8, ⁴ <i>J</i> (PH) 2.0]	8.73 [2 H, s, OC ₆ H ₂ (NO ₂) ₃]
-~	1.20 (9 H, s)	4.35 [2 H, dd, ² J(PH) 8.9, ⁴ J(PH) 4.2]	01/3 [2 11, 3, 3 0 06112(1 (32)3]
3 e	0.85 (9 H, s)	3.13 [2 H, dd, ² <i>J</i> (PH) 12.0, ⁴ <i>J</i> (PH) 2.7]	5.04 [1 H, dd, J(PH) 3.9, 3.2, PCH=]
	1.66 (9 H, s)	5115 [2 11, dd, v (1 11) 1210, v (1 11) 21/]	5.6 . [1 11, 00, 0 (1 11) 5.5, 5.2, 1 6.11]
4 ^e	0.96 (9 H, s)	2.82 [1 H, dd, ² J(HH) 11.7, ² J(PH) 12.8]	-15.78 [1H, ddd, ${}^{2}J$ (HH) 4.2, ${}^{2}J$ (PH) 10.0, 14.3, IrH]
•	1.68 (9 H, s)	3.44 [1 H, m, ² J(HH) 11.7, ² J(PH) 12.5, ⁴ J(PH) 2.9]	-8.62 [1 H, dt, ${}^{2}J$ (HH) 4.2, ${}^{2}J$ (PH) 9.4, IrH]
	1.00 (> 11, 0)	2111 [111, m, v (1111) 1111, v (1111) 1210, v (1111) 215]	4.81 [1 H, dd, J(PH) 5.1, 3.0, PCH=]
5^d	1.02 (9 H, s)	3.24 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.3, ${}^{4}J(PH)$ 3.5]	0.14 [3 H, t, ³ J(PH) 5.3, IrMe]
	1.42 (9 H, s)	3.53 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.3, ${}^{4}J(PH)$ 2.1]	4.87 [1 H, dd, J(PH) 5.1, 3.9, PCH=]
6a c,d	0.97 (9 H, s)	2.59 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 14.2, ${}^{4}J(PH)$ 1.5]	2.85 (3 H, s, NMe)
	1.30 (9 H, s)	$3.26 [1 \text{ H}, \text{dd}, {}^{2}J(\text{HH}) 14.2, {}^{2}J(\text{PH}) 11.7]$	$3.17 [1 \text{ H, m, }^{3}J(\text{HH}) 4.8, ^{3}J(\text{PH}) 8.7, 4.1, =\text{CH}]$
	(/ /		3.52 [1 H, m, ³ J(HH) 4.8, ³ J(PH) 10.4, 2.7, =CH]
			4.26 [1 H, d, J(PH) 4.4, PCH=]
$\mathbf{6b}^{d,f}$	0.64 (9 H, s)	$2.34 [1H, t, {}^{2}J(HH) = {}^{2}J(PH) 12]$	$1.15 (1 \text{ H, m, CH}_2=\text{CH}_2)$
	1.13 (9 H, s)	$3.29 [1H, t, {}^{2}J(HH) = {}^{2}J(PH) 12]$	$1.83 (1 H, m, CH_2=CH_2)$
			$2.06 (1 \text{ H, m, CH}_2=\text{CH}_2)$
			$2.41 (1 H, m, CH_2=CH_2)$
			3.98 [1 H, d, <i>J</i> (PH) 2.3, PCH=]
6c d	1.01 (9 H, s)	2.59 [1 H, ddd, ² <i>J</i> (HH) 15.6, ² <i>J</i> (PH) 13.8, ⁴ <i>J</i> (PH) 2.0]	3.41 (3 H, s, OMe)
	1.33 (9 H, s)	3.43 [1 H, dd, ² <i>J</i> (HH) 15.6, ² <i>J</i> (PH) 11.7]	3.69 (3 H, s, OMe)
			4.15 [1 H, d, <i>J</i> (PH) 3.9, PCH=]
7 ^e	0.81 (9 H, s)	2.91 [1 H, m, ² J(HH) 12.8, ² J(PH) 13.0, ⁴ J(PH) 2.5]	4.90 [1 H, dd, J(PH) 5.1, 4.2, PCH=]
	1.73 (9 H, s)	3.33 [1 H, t, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.8]	
8^d	0.89 (9 H, s)	2.52 [1 H, t, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.8]	3.06 (3 H, s, NMe)
	1.47 (9 H, s)	3.89 [1 H, t, ${}^{2}J(HH)$ 12.8, ${}^{2}J(PH)$ 13.0]	3.19 [1 H, dt, ${}^{3}J(HH)$ 5.2, ${}^{3}J(PH)$ 6.2, 5.1, =CH]
		$4.03 [1 \text{ H, m, }^2 J(\text{HH}) 19.2]^g$	$4.02 [1 \text{ H, m, }^{3}J(\text{HH}) 5.2, \text{PCH=}]^{g}$
		4.73 [1 H, dd, ² J(HH) 19.2, ² J(PH) 12.0]	$8.75 [2 H, s, OC_6H_2(NO_2)_3]$
9a ^d	0.79 (9 H, s)	3.33 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.0, ${}^{4}J(PH)$ 1.8]	-15.35 [1 H, dd, ${}^{2}J(PH)$ 10.0, 7.7, IrH]
	1.21 (9 H, s)	$3.70 [1 \text{ H, m, }^2 J(\text{HH}) 12.0, ^2 J(\text{PH}) 14.5, ^4 J(\text{PH}) 5.5]$	
		4.45 [1 H, ddd, ² <i>J</i> (HH) 17.8, ² <i>J</i> (PH) 12.8, ⁴ <i>J</i> (PH) 8.0]	
01.4	0.54 (0.11	4.70 [1 H, ddd, ² J(HH) 17.8, ² J(PH) 10.0, ⁴ J(PH) 2.6]	15 11 5111 11 2 (DV) 0 5 5 5 5 1 11
9b ^d	0.74 (9 H, s)	3.46 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.1, ${}^{4}J(PH)$ 1.3]	-15.11 [1H, dd, ² <i>J</i> (PH) 9.5, 7.5, IrH]
	1.29 (9 H, s)	3.71 [1 H, m, ² J(HH) 12.1, ² J(PH) 15.1, ⁴ J(PH) 6.3]	
		4.34 [1 H, ddd, ² J(HH) 17.6, ² J(PH) 12.8, ⁴ J(PH) 8.0]	
		4.79 [1 H, ddd, ² J(HH) 17.6, ² J(PH) 10.3, ⁴ J(PH) 2.4]	

^a Recorded at 100 MHz, chemical shifts are in ppm relative to SiMe₄, J values are in Hz, solvent CD₂Cl₂ unless otherwise stated, s = singlet, d = doublet, t = triplet, d = doublet of doublets, d = doublet of triplets, d = doublet doublet of doublets, d = multiplet. ^b From ref. 6. ^c In CDCl₃. ^d At 250 Mz. ^e In C₆D₆. ^f At -80 °C. At 20 °C the free ethene and complexed ethene gave a broad peak at δ 5.12, w_2 ca. 7.7 Hz, whilst on the NMR timescale the CH₂ protons gave a doublet at δ 3.09, ²J(PH) = 10.8 Hz and the PCH= proton a broad peak at δ 4.56 with unresolved coupling to P, the two Bu^t groups absorbed as singlets at δ 0.80 and 1.34. ^g Coupling to phosphorus nuclei not resolved.

{1H} NMR spectrum showed that the phosphorus atoms were no longer trans with ${}^{2}J(PP) = 22$ Hz. The proton NMR data showed that the co-ordinated N-methylmaleimide moiety was bonded to iridium in a static fashion on the NMR timescale and that the CO-CH-CH-CO hydrogens were non-equivalent, δ 3.17 and 3.52 and mutually coupled, with ${}^3J(HH) = 4.8$ Hz, and each coupled to phosphorus. The CH proton of the enehydrazone backbone absorbed at δ 4.26 [J(PH) = 4.4 Hz]. We formulate the complex as having the N-methylmaleimide in approximately the same plane as the P-Ir-P moiety, as found for many other trigonal bipyramidal five-co-ordinate olefinic phosphine complexes.¹⁴ In the ¹³C-{¹H} NMR spectrum both CH=CH carbons gave a doublet of doublets, i.e. they are coupled to both phosphorus atoms. One coupling (presumably due to the trans phosphorus) was much larger than the other coupling, viz. for δ_C 36.9, ${}^2J(PC) = 27.5$ and 5.5 Hz and for δ_C 39.1, ${}^{2}J(PC) = 33.5$ and 4.6 Hz. The other proton (Table 2) and carbon-13 (Table 3) data are consistent with the assigned struc-

A CD₂Cl₂ solution of complex **3** reacted rapidly with ethene to give essentially a single product (adduct) which we formulate as **6b** and which was characterised only in solution. At -80 °C, the ³¹P-{¹H} NMR spectrum showed ²*J*(PP) = 49 Hz, *i.e.* the phosphorus atoms are no longer mutually *trans*. The proton NMR data show that at -80 °C all four ethene hydrogens are non-equivalent [δ 1.15 (m), 1.83 (m), 2.06 (m) and 2.41 (m)], *i.e.* it is not rotating fast on the NMR timescale. All four hydrogens

were also coupled to phosphorus. The other data, e.g. for PCH= and PCH2, are consistent with the structure **6b**. At 20 °C (see Table 2) the free ethene and complexed ethene were exchanging rapidly, giving a single broadened peak and this caused equivalence of the two CH₂P protons of the ene-hydrazone backbone.

Dimethyl acetylenedicarboxylate reacted over a period of a few minutes at ca. 20 °C with complex 3 to give an adduct $\mathbf{6c}$. This was characterised by elemental analytical and IR data, e.g. v(C=O) 1990 and v(C=O) 1700 and 1680 cm⁻¹. As with the N-methylmaleimide adduct the $^2J(PP)$ for $\mathbf{6c}$ was small (25 Hz). The proton NMR data for $\mathbf{6c}$ show non-equivalent OCH₃ groups, a PCH= proton and two non-equivalent PCH₂ protons, as for $\mathbf{6a}$. This complex was very labile in CD₂Cl₂ solution and had decomposed extensively within 2 h at 20 °C.

An orange solution of complex 3 in C_6D_6 reacted slowly over a period of 7 h at ca. 20 °C with dioxygen to give a single product, as evidenced by the $^{31}P-\{^{1}H\}$, ^{1}H , $^{1}H-\{^{31}P\}$ and $^{13}C-\{^{1}H\}$ NMR data. We tentatively formulate this as the η^2-O_2 complex 7. This showed a large value for $^{2}J(PP)$ of 396 Hz indicating that the ene–hydrazone diphosphine was still coordinated with the two phosphorus atoms mutually trans. The proton NMR data showed two tert-butyls, a CH_2 group with non-equivalent hydrogens and a single CH= hydrogen. This dioxygen adduct was labile and decomposed on attempted isolation.

We have shown previously 3 that ene-hydrazone diphosphine

Table 3 ¹³C-{¹H} NMR data^a

Compound 1 ^b 3 ^c 5 ^d	δ(CMe ₃) 28.8 (s) 31.7 (s) 28.6 (d, 1.4) 31.2 (s) 29.2 (s) 30.8 (s)	δ(CMe ₃) 39.4 (d, 15.2) 39.5 (d, 3.6) 38.9 (d, 13.9) 39.0 (d, 2.2) 39.0 (d, 13.9) 39.2 (d, 3.2)	δ(CH ₂) 20.5 (d, 26.2) 20.0 (d, 23.4) 19.2 (d, 24.8)	δ(C=N) 190.6 (dd, 17.2, 1.8) 191.7 (dd, 21.0, 2.0) 190.5 (dd, 15.5, 2.2)	δ(C≡O) 169.9 (t, 7.9) 184.0 (t, 9.7) 171.7 (t, 8.0)	Others 74.4 (d, 66.5, PCH=) 149.6 (d, 3.7, =CN) 77.6 (d, 60.5, PCH=) 150.6 (d, 3.5, =CN) -8.6 (t, 3.5, IrMe) 73.5 (d, 68.1, PCH=) 151.3 (d, 4.1, =CN)
6a ^{c,d}	28.4 (s) 30.2 (s)	37.1 (d, 14.2) 39.4 (d, 4.3)	26.8 (dd, 24.8) ^e	184.7 (d, 15.7)	158.4 (t, 4.1)	22.5 (s, NMe) 36.9 (dd, 27.5, 5.5, CH=) 39.1 (dd, 33.5, 4.6, CH=) 72.6 (d, 65.5, PCH=) 137.9 (dd, 46.7, 1.9, =CN) 178.6 (d, 3.7, C=O) 179.8 (dd, 3.7, 1.6, C=O)
7^f	28.8 (s) 31.7 (s)	39.7 (d, 12.4) 40.0 (d, 2.8)	19.8 (d, 27.6)	192.9 (d, 13.3)	168.9 (t, 8.5)	76.0 (d, 66.8, PCH=) 147.4 (d, 3.0, =CN)
9a ^c	27.0 (s) 28.4 (s)	40.7 (d, 1.9) 41.3 (d, 5.4)	23.8 (d, 24.6) 42.1 (d, 35.7)	173.5 (d, 2.3) 191.7 (t, 2.8)	162.2 (t, 7.3)	, , ,
9b	26.9 (s) 28.3 (s)	41.2 (d, 1.9) 41.7 (d, 5.5)	23.3 (d, 25.4) 41.5 (d, 35.7)	174.5 (s) 192.8 (t, 2.7)	162.0 (t, 7.7)	

^a Recorded at 100.6 MHz, chemical shifts are in ppm relative to SiMe₄, solvent CD₂Cl₂ unless otherwise stated and J(PC)/Hz values are given in parentheses. ^b From ref. 6. ^c In CDCl₃. ^d At 62.9 MHz. ^{e 4}J(PC) = 2.3 Hz. ^f In C₆D₆.

$$\begin{bmatrix} Bu^{t} \\ Ph_{2}P_{m} & Bu^{t} \\ Ph_{2}P_{m} & Ph_{2} \\ CO \end{bmatrix} = \begin{bmatrix} Bu^{t} \\ Ph_{2}P_{m} & Bu^{t} \\ Ph_{2}P_{m} & Ph_{2} \\ CO \end{bmatrix} [OC_{6}H_{2}(NO_{2})_{3}]$$

$$\begin{bmatrix} Bu^{t} \\ Ph_{2}P_{m} & Ph_{2} \\ Ph_{2}P_{m} & Ph_{2} \\ CO \end{bmatrix}$$

Scheme 3 L = N-Methylmaleimide. (i) $HOC_6H_2(NO_2)_3-2,4,6$

ligands on platinum or palladium are reversibly protonated at the ene-hydrazone carbon, *viz*. PCH= to give PCH₂ thereby generating the corresponding azine diphosphine complex. However, square planar iridium(I) phosphine complexes, *e.g.* of type *trans*-[IrX(CO)(PR₃)₂] (X = Cl, Br or I; R = alkyl or aryl), are well known to protonate on iridium giving an iridium hydride. We find that the ene-hydrazone diphosphine iridium(I) complex 3 reacts rapidly and exclusively with 1 mol of picric acid to give the square planar azine diphosphine iridium(I) cation, isolated as the picrate salt 2b. This was fully characterised by elemental analysis, its IR spectrum, and by ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR spectroscopy, see Experimental section and Tables 1 and 2.

We now show that the five-co-ordinate N-methylmaleimide adduct $\bf 6a$ is protonated by picric acid, exclusively on the enehydrazone diphosphine backbone to give an azine diphosphine backbone, *i.e.* conversion into an N-methylmaleimide-iridium(I) cationic complex containing an azine moiety occurred and this was isolated as the picrate salt $\bf 8$ (Scheme 3). We have previously prepared the cation [Ir(CO)- $(\eta^2$ -COCH=CHCONMe){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂-PPh₂}]⁺ directly by treating $\bf 2a$ with N-methylmaleimide and determined the crystal structure of its PF₆ salt [Ir(CO)- $(\eta^2$ -COCH=CHCONMe){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂-PPh₂}]PF₆.6

We have now converted the ene–hydrazone backbone of the neutral iridium(III) hydride complex 1 into the corresponding cationic azine diphosphine complex hydride 9a by bubbling hydrogen chloride into a benzene solution of 1 (Scheme 1). The salt 9a separated as a white solid. This was somewhat labile but was readily converted into the corresponding PF₆ salt 9b by treating a solution of 9a in methanol with NH₄PF₆. This azine diphosphine iridium(III) hydride 9b was characterized by elemental analysis and infrared spectroscopy, v(Ir-H) 2205, $v(C\equiv O)$ 2075 cm⁻¹. The ³¹P-{¹H} NMR spectrum established that the

azine diphosphine was *mer* with ${}^2J(PP) = 317$ Hz; and in the 1H and 1H -{ ${}^{31}P$ } NMR spectra the hydride resonance occurred at $\delta - 15.11$ with ${}^2J(PH) = 9.5$ and 7.5 Hz. Both *tert*-butyl resonances and the resonances of all four hydrogens of the two CH₂ groups were identified. The ${}^{13}C$ -{ ${}^{1}H$ } NMR data for **9b** are in Table 3. Although the corresponding chloride salt **9a** was not sufficiently pure for elemental analysis it was characterised by infrared spectroscopy and by ${}^{31}P$ -{ ${}^{1}H$ }, ${}^{1}H$, ${}^{1}H$ -{ ${}^{31}P$ } and ${}^{13}C$ -{ ${}^{1}H$ } NMR spectroscopy (Tables 1–3). Complex **9a**, when treated with an excess of triethylamine, gave the iridium(1) complex **3** in 72% isolated yield.

Enamines react with electrophiles in what is a very useful and selective synthetic method in organic chemistry. We have shown in our previous work ³ that neutral square planar complexes of Pt^{II} containing the terdentate ene-hydrazone diphosphine PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂ undergo electrophilic attack by MeI exclusively on the backbone to give corresponding methyl-substituted azine diphosphine-platinum complexes. However, in the present paper we have shown that, in contrast with the behaviour of the platinum(II) complex, the ene-hydrazone diphosphine iridium(I) complex 3 undergoes electrophilic attack by MeI at iridium (*i.e.* oxidative addition). This reflects the greater tendency of iridium(I) to undergo oxidative addition than platinum(II).

It is possible that treatment of the various adducts 4, 5, 6a-6c and even 8 with electrophiles for longer periods or with more vigorous conditions than described here might cause electrophilic attack on the backbone at the PCH= carbon. We have not studied this apart from protonation.

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer 457 grating spectrometer, NMR spectra using a JEOL FX-90Q (operating frequencies for ¹H and ³¹P of 89.5 and 36.2 MHz, respectively), a FX-100 (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz, respectively), a Bruker ARX-250 (operating frequencies for ¹H, ³¹P and ¹³C of 250.1, 101.3 and 62.9 MHz respectively), or a AM-400 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 400.13, 161.9 and 100.6 MHz, respectively). The ¹H and ¹³C chemical shifts are relative to tetramethylsilane, the ³¹P shifts to 85% phosphoric acid.

The azine diphosphine Z,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)-CH₂PPh₂I and the iridium(III) complex 1 were prepared according to our published procedure.^{1,6}

Preparations

[Ir(CO){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂}][OC₆H₂-(NO₂)₃] **2b.** Picric acid (12 mg, 0.052 mmol) was added to a solution of complex **3** (40 mg, 0.051 mmol) in dichloromethane (*ca.* 1.5 cm³). After 10 min the solvent was removed under reduced pressure and the residue triturated with methanol to give the required product **2b** as yellow microcrystals (36 mg, 69%) (Found: C, 48.6; H, 4.55; N, 6.8. C₄₃H₄₄IrN₅O₈P₂· 0.75CH₂Cl₂ requires C, 48.8; H, 4.25; N, 6.5%). IR (KBr): ν (C=O) 1980 cm⁻¹.

[Ir(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}] 3. An excess of NEt₃ (2.5 cm³) was added to a solution of complex 1 (0.57 g, 0.69 mmol) in benzene (10 cm³). After 3 h the resultant orange solution was concentrated to low volume (ca. 1 cm³) under reduced pressure. Addition of ethanol to the residue gave the iridium(i) complex 3 as orange microcrystals (0.39 g, 72%) (Found: C, 59.3; H, 5.65; N, 3.35. C₃₇H₄₁IrN₂OP₂·0.75C₆H₆ requires C, 59.15; H, 5.45; N, 3.35%). IR (CH₂Cl₂): v(C=O) 1945 cm⁻¹.

From complex 9a. An excess of NEt₃ (0.5 cm³) was added to a suspension of complex 9a (53 mg, 0.059 mmol) in benzene (2 cm³). After 3 h the solvent was removed under reduced pressure and the residue triturated with ethanol to give the required product 3 as orange microcrystals (33 mg, 72%)

mer,cis-[IrH₂(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}]

4. A solution of complex **3** (50 mg, 0.064 mmol) in C_6D_6 (ca. 1 cm³) was kept in an atmosphere of dihydrogen for 20 h. The $^{31}P-\{^1H\}$, 1H and $^1H-\{^{31}P\}$ NMR spectra were recorded, see Discussion and Tables.

[IrMe(I)(CO){PPh₂CH=C(Bu¹)N-N=C(Bu¹)CH₂PPh₂}] 5. An excess of MeI (0.25 cm³) was added to a solution of complex 3 (40 mg, 0.098 mmol) in CH₂Cl₂ (1 cm³). After 3 h the resultant yellow solution was concentrated to low volume (ca. 0.1 cm³) under reduced pressure. Addition of methanol to the residue gave the methyliridium(III) complex 5 as yellow microcrystals (37 mg, 78%) (Found: C, 49.05; H, 4.8; N, 2.95. C₃₈H₄₄IIrN₂OP₂ requires C, 49.3; H, 4.8; N, 3.0%). IR (CH₂Cl₂): ν (C=O) 2015 cm⁻¹.

[Ir(CO)(η^2 -COCH=CHCONMe){PPh₂CH=C(Bu¹)N-N=C-(Bu¹)CH₂PPh₂}] 6a. N-Methylmaleimide (15 mg, 0.135 mmol) was added to a solution of complex 3 (60 mg, 0.077 mmol) in CH₂Cl₂ (1.5 cm³). After 15 min the resultant yellow solution was concentrated to low volume (ca. 0.1 cm³) under reduced pressure. Addition of methanol to the residue gave the required complex 6a as yellow microcrystals (59 mg, 86%) (Found: C, 55.25; H, 5.25; N, 4.55. C₄₂H₄₆IrN₃O₃P₂·0.75CH₂Cl₂ requires C, 55.35; H, 5.1; N, 4.6%). IR (KBr): $v(C\equiv O)$ 1995 and $v(C\equiv O)$ 1740 and 1680 cm⁻¹.

[Ir(CO)(η^2 -CH₂=CH₂){PPh₂CH=C(Bu')N-N=C(Bu')CH₂-PPh₂}] **6b.** Ethene was bubbled through a solution of complex **3** (20 mg, 0.025 mmol) in CD₂Cl₂ (*ca.* 0.5 cm³) for 3 min. The ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR spectra were recorded at both 20 and -80 °C (see Tables and Discussion).

[Ir(CO)(η²-MeO₂CC=CCO₂Me){PPh₂CH=C(Bu')N-N=C-(Bu')CH₂PPh₂}] 6c. Dimethyl acetylenedicarboxylate (20 mg, 0.14 mmol) was added to a solution of complex 3 (40 mg, 0.051 mmol) in CH₂Cl₂ (1.5 cm³). After 10 min the resultant yellow solution was concentrated to low volume (*ca.* 0.1 cm³) under reduced pressure. Addition of ethanol to the residue gave the

required complex **6c** as yellow microcrystals (35 mg, 74%) (Found: C, 55.65; H, 5.15; N, 2.95. $C_{43}H_{47}IrN_2O_5P_2$ requires C, 55.75; H, 5.1; N, 3.05%). IR (KBr): $v(C\equiv O)$ 1990, $v(C\equiv C)$ 1800, and $v(C\equiv O)$ 1700 and 1680 cm⁻¹.

[Ir(CO)(η^2 -O₂){PPh₂CH=C(Bu¹)N-N=C(Bu¹)CH₂PPh₂}] 7. A solution of complex 3 (59 mg, 0.075 mmol) in C₆D₆ (ca. 1 cm³) was kept in an atmosphere of dioxygen for 7 h. The ³¹P-{¹H}, ¹³C-{¹H}, ¹H and ¹H-{³¹P} NMR spectra were recorded, see Tables and Discussion.

[Ir(CO)(η^2 -COCH=CHCONMe){PPh₂CH₂C(Bu')=N-N=C-(Bu')CH₂PPh₂}][OC₆H₂(NO₂)₃] **8.** Picric acid (11 mg, 0.048 mmol) was added to a solution of complex **6a** (35 mg, 0.039 mmol) in chloroform (*ca.* 1.5 cm³). After 30 min the solvent was removed under reduced pressure and the residue triturated with methanol to give the required product **8** as yellow microcrystals (35 mg, 79%) (Found: C, 48.1; H, 4.2; N, 6.6. C₄₈H₄₉IrN₆-O₁₀P₂·0.75CHCl₃ requires C, 48.2; H, 4.1; N, 6.9%). IR (KBr): ν (C=O) 2035 and ν (C=O) 1745 and 1680 cm⁻¹.

 $[IrH(Cl)(CO)\{PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)CH_2PPh_2\}]Cl$

9a. Hydrogen chloride was bubbled through a solution of complex **1** (82 mg, 0.10 mmol) in benzene (ca. 1.5 cm³) for 1 min. The resulting white precipitate **9a** was filtered off and washed with benzene. Yield 83 mg, 93%. IR (CH₂Cl₂): v(Ir–H) 2200 and v(C=O) 2070 cm⁻¹.

[IrH(Cl)(CO){PPh₂CH₂C(Bu¹)=N-N=C(Bu¹)CH₂PPh₃}]PF₆ **9b.** A solution of NH₄PF₆ (65 mg, 0.40 mmol) in methanol (1 cm³) was added to a solution of complex **9a** (60 mg, 0.067 mmol) in methanol (1 cm³). The required iridium(III) complex **9b** deposited as white microcrystals. Yield 52 mg, 80% (Found: C, 45.7; H, 4.4; Cl, 3.75; N, 2.9. $C_{37}H_{43}ClF_6IrN_2OP_3$ requires C, 46.0; H, 4.5; Cl, 3.65; N, 2.9%). IR (CH₂Cl₂): v(Ir–H) 2205 and v(C=O) 2075 cm⁻¹.

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for a generous loan of iridium salts.

References

- 1 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.
- 2 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653.
- 3 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 3311.
- 4 P. A. Cooke, S. D. Perera, B. L. Shaw, M. Thornton-Pett and J. D. Vessey, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 435.
- 5 S. D. Perera and B. L. Shaw, *J. Chem. Soc.*, *Chem. Commun.*, 1995, 865
- 6 S. D. Perera, B. L. Shaw and M. Thornton-Pett, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 3111 and refs. therein.
- 7 U. Klabunde, Inorg. Synth., 1974, 15, 82.
- 8 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, *J. Chem. Soc.*, *Dalton Trans.*, 1994, 103.
- 9 U. U. Ike, S. D. Perera, B. L. Shaw and M. Thornton-Pett, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 2057 and refs. therein.
- 10 C. E. Johnson, B. J. Fisher and R. Eisenberg, *J. Am. Chem. Soc.*, 1983, **105**, 7772.
- 11 M. J. Auburn, R. D. Holmes-Smith and S. R. Stobart, J. Am. Chem. Soc., 1984, 106, 1314.
- 12 C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976, 1020.
- 13 E. F. Landvatter and T. B. Rauchfuss, *Organometallics*, 1982, **1**, 506. 14 S. D. Ittel and J. A. Ibers, *Adv. Organomet. Chem.*, 1976, **14**, 33.

Received 16th March 1998; Paper 8/02073F